1		Nutritional composition and characterization of
2		sweet potato fermented with different strains.
3		許祐禎(5115)
4		11/29/2023
5		Outline
6	1.	Introduction
7	2.	Effect of different strains fermentation on nutritional functional components and
8		flavor compounds of sweet potato slurry.
9	3.	The sustainability of sweet potato residues from starch processing by-products:
10		preparation with Lacticaseibacillus rhamnosus and Pediococcus pentosaceus,
11		characterization, and application.
12	4.	Conclusion
13		Abstract
14		Sweet potato (Ipomoea batatas Lam.) is widely used in primary processing, such as
15	swe	eet potato starch, dried sweet potato, and sweet potato juice. During primary
16	pro	cessing, a significant quantity of nutrients cannot be utilized and are wasted. Thus, it
17	is n	ecessary to develop an environmentally friendly processing technology to fully use
18	swe	eet potatoes. For this reason, the nutritional composition and characterization of
19	ferr	nented sweet potatoes were studied. After being hydrolyzed by amylase, sweet potato
20	slu	rry or sweet potato residues (SPR) were inoculated with 10% microorganisms, and
21	the	n incubated at 37°C for 48 hours. Whether fermentation with Aspergillus niger,
22	Bad	cillus coagulans, or the combination of Lacticaseibacillus rhamnosus and
23	Pec	liococcus pentosaceus, all of them show the down-regulation in pH value. In contrast,
24	the	concentration of lactic acid and acetic acid indicate the opposite result.
25	Sin	nultaneously, although the concentration of sugar increases after the hydrolysis of
26	star	rch, it decreases by the following fermentation. Similarly, dietary fiber was first
27	inc	reased due to hydrolysis, then decreased for utilization by microorganisms. Total
28	pol	yphenol content also increases after fermentation, causing an elevation of antioxidant
29	acti	vities in fermented SPR. The volatile compounds rose dramatically after fermenting
30	wit	h Aspergillus niger and Bacillus coagulans. To further understand the digestibility
31	and	colonic fermentability of fermentation products, Zhu et al. conducted an in vitro
32	sali	va-gastrointestinal digestion and <i>in vitro</i> colonic fermentation. As a result, the acetate
33	acio	d content increased from 820 to 1366 μ g/mL, and the total polyphenol level increased
34	froi	m 138 to 178 mg GAE/100gDW during colonic fermentation time of 12 to 48h in the
35	ferr	nented SPR group. Additionally, the abundance of bifidobacterium decreased. In
36	sun	nmary, fermented sweet potato is more nutritious than unfermented one, causing its
37	hea	Ith benefits, which may relate to gut microbiota.

1	References
2	Alam, M. K. (2021). A comprehensive review of sweet potato (Ipomoea batatas [L.]
3	Lam): Revisiting the associated health benefits. Trends in Food Science &
4	Technology, 115, 512-529.
5	Zhu, L., Mu, T., Ma, M., Sun, H., & Zhao, G. (2022). Nutritional composition,
6	antioxidant activity, volatile compounds, and stability properties of sweet potato
7	residues fermented with selected lactic acid bacteria and bifidobacteria. Food
8	Chemistry, 374, 131500.