1	Effects of High Hydrostatic Pressure (HHP) and Storage Temperature
2	on Physical, Microbial, and Chemical Attributes of Oysters
3	楊佩錦 (5124)
4	12/22/2021
5	Outline
6	1. Introduction
7	2. Effects of high hydrostatic pressure (HHP) and storage temperature on physical,
8	microbial, and chemical attributes of oysters
9	A. Effects of HHP on the physical, microbial, and chemical attributes of oysters
10	(Crassostrea virginica)
11	B. Effects of HHP and storage temperature on bacterial counts, color change,
12	fatty acids and non-volatile taste active compounds of oysters (Crassostrea
13	ariakensis)
14	3. Conclusion
15	Abstract
16	Oyster is the most abundant shellfish in the world that are harvested, with annual
17	global production of more than 5,000,000 tons. As a filter feeder, oysters contain many
18	human pathogens, such as Vibrio parahaemolyticus and V. vulnificus which causes liver
19	and stomach illness and other critical diseases. The studies were to investigate the effect
20	of different HHP treatments and storage temperature on the quality and non-volatile taste
21	active compounds of oysters. The color, texture, tissue yield, and lipid oxidation values
22	were higher in the HHP oysters than control. In addition, the counts of microorganisms,
23	unsaturated fatty acid percentage, equivalent umami concentration (EUC) values, and
24	glycogen were decreased with the increase of pressure. Based on the results, HHP can
25	improve the safety and quality of oysters. Besides, being treated with 400 or 600 MPa
26	for 3 min and stored at -20° C can improve the safety of oysters for 15 days.
27	

1 **References**

2 FAO. (2021). Fisheries and aquaculture information and statistics service. Available at:

3 http://www.fao.org/fishery/statistics/en.

- 4 Lingham, T., Ye, M., Chen, H., Chintapenta, L. K., Handy, E., Zhao, J., ... & Ozbay, G.
- 5 (2016). Effects of high hydrostatic pressure on the physical, microbial, and chemical
- 6 attributes of oysters (Crassostrea virginica). Journal of Food Science, 81(5),

7 M1158-M1166.

- 8 Liu, C., Gu, Z., Lin, X., Wang, Y., Wang, A., Sun, Y., & Shi, Y. (2022). Effects of high
- 9 hydrostatic pressure (HHP) and storage temperature on bacterial counts, color
- 10 change, fatty acids and non-volatile taste active compounds of oysters (*Crassostrea*
- 11 *ariakensis*). Food Chemistry, 372, 131247.