1	Adjuvant effects of Lactobacillus on enhancing immune responses and anti-	i-
2	influenza virus in mice	
3	蔡欣妤(513)	6)
4	2021/10/2	20
5	Outline	
6	1. Introdution	
7	2. Nasal priming with immunobiotic lactobacilli improves the adaptive immune response	se
8	against influenza virus	
9	3. Adjuvant effects of killed Lactobacillus casei DK128 on enhancing T helper type	1
10	immune responses and the efficacy of influenza vaccination in normal and CD4	4-
11	deficient mice	
12	4. Conclusion	
13		
14	Abstract	
15	Influenza virus (IFV) is responsible of a highly contagious disease that has a substantial impa	ct
16	on global health. This virus is a major respiratory pathogen that causes a high degree of	of
17	morbidity and mortality, especially in immunocompromised hosts. Natural components like	ce
18	probiotics have been severally studied and have been proved to be a safe alternative	<i>v</i> e
19	prophylactic and therapeutic approach for modulating immune responses via the induction of	of
20	the newly described process of trained immunity. Lactobacillus is able to improve both the	ne
21	humoral and cellular adaptive immune responses induced by IFV infection or vaccination	n.
22	Through the differential regulatory cytokines induced by Lactobacillus contributed to the	ne
23	protection against IFV without inducing inflammatory-mediated lung damage. Combining th	ne
24	above results, Lactobacillus can as a potential vaccine adjuvant, promoting the adjusting the	ne
25	pathways of innate and adaptive immunities through maintaining the balance between Th1 and	ıd
26	Th2 lymphocytes in mice to enhancing protective efficacy of influenza vaccination.	

1 > References

- Jung, Yu-Jin, *et al.* "Adjuvant effects of killed *Lactobacillus casei* DK128 on enhancing T
 helper type 1 immune responses and the efficacy of influenza vaccination in normal and
 CD4-deficient mice." *Vaccine* 38.36 (2020): 5783-5792.
- 5 Tonetti, Fernanda Raya, et al. "Nasal priming with immunobiotic lactobacilli improves the
- adaptive immune response against influenza virus." *International immunopharmacology* 78 (2020): 106115.
- 8