1	Exploring the Potential and Mechanisms of Natural Proteins and
2	Synthetic Drugs Against SARS-CoV-2
3	蔡幸倫 (5136)
4	2025/11/26
5	Outline
6	1. Introduction
7 8	 Remdesivir Metabolite GS-441524 Effectively Inhibits SARS-CoV-2 Infectionin Mouse Models
9 10	3. Bovine lactoferrin inhibits SARS-CoV-2 and SARS-CoV-1 by targeting the RdRp complex and alleviates viral infection in the hamster model
11	4. Conclusion
12	Abstract
13	SARS-CoV-2 has caused the global COVID-19 pandemic. Although remdesivir was
14	the first antiviral approved for clinical use, its therapeutic efficacy remains controversial,
15	prompting further investigation of its primary active antiviral component. In addition,
16	SARS-CoV-2 RNA has been detected in the breast milk of infected mothers, but
17	infectious virus particles have never been isolated, suggesting that there may be antiviral
18	components in breast milk. These two studies respectively examined the antiviral
19	potential of GS-441524-the parent nucleoside of remdesivir and the naturally occurring
20	milk protein bovine lactoferrin (bLf) derived from milk against SARS-CoV-2, as well
21	as their possible mechanisms.
22	In cell experiments and animal models, GS-441524 can effectively inhibit SARS-
23	CoV-2 activity and reduce tissue damage, while its production cost and efficacy are also
24	lower compared to remdesivir. This study also developed the first SARS-CoV-2 animal
25	model in AAV-hACE2 mice using GS-441524. The second study shows that bLf and milk
26	fat globule membrane (MFGM) are identified as the main antiviral components in breast
27	milk. Among them, bLf can block the interaction between the spike protein and ACE2,
28	inhibit viral RNA replication, and has been shown to directly inhibit the RNA polymerase
29	(RdRp) of SARS-CoV-2.

1	Overall, these studies show that GS-441524 and bLf can combat SARS-CoV-2 by
2	inhibiting viral replication. These findings support the antiviral potential of both synthetic
3	nucleoside analogs and natural proteins against coronaviruses.
4	Reference
5	Li, Y., Cao, L., Li, G., Cong, F., Li, Y., Sun, J., et al. (2021). Remdesivir Metabolite GS-
6	441524 Effectively Inhibits SARS-CoV-2 Infectionin Mouse Models. Journal of
7	Medicinal Chemistry, 65(4), 2785–2793.

He, S.-T., Qin, H., Guan, L., Liu, K., Hong, B., Zhang, X., et al. (2022). Bovine lactoferrin

viral infection in the hamster model. Journal of Medical Virology, 95(1), e28281.

inhibits SARS-CoV-2 and SARS-CoV-1 by targeting the RdRp complex and alleviates

8

9

10