國立臺灣海洋大學食品科學系碩士班 專題討論書面報告

零售與收穫後食品中微生物風險量化評估與模型建立

Quantitative Microbiological Risk Assessment and Model Development in Retail and Post-Harvest Foods

任課老師:吳彰哲 老師

吳俊逸 老師

指導教授:林泓廷 老師

學號:01232201

學生:胡家芳 (5121)

報告日期: 114年10月22日

內容	時間掌控	表達能力	投影片	書面資料
40%	10%	30%	10%	10%

指導教授簽名:

1	Quantitative Microbiological Risk Assessment and Model
2	Development in Retail and Post-Harvest Foods
3	胡家芳 (5121)
4	2025/10/22
5	Outline
6	I. Introduction
7	II. Development of a quantitative microbiological spoilage risk assessment
8	(QMSRA) model for cooked ham sliced at retail
9	III. Quantitative microbiological spoilage risk assessment (QMSRA) of fresh poultry
10	fillets during storage at retail
11	IV. Modeling naturally-occurring Vibrio parahaemolyticus in post-harvest raw
12	shrimps
13	V. Conclusion
14	Abstract
15	The study integrated the development and application of quantitative
16	microbiological risk and spoilage assessment models to characterize microbial behavior
17	in retail and post-harvest foods. For retail-sliced cooked ham, a Quantitative
18	Microbiological Spoilage Risk Assessment (QMSRA) model was developed based on
19	the stochastic growth of lactic acid bacteria (LAB), identified as the specific spoilage
20	organisms (SSO), and a spoilage-response relationship describing consumer perception
21	variability. Simulation results predicted zero spoilage events within 4.5 days of storage,
22	with spoilage risk increasing significantly after 5-6 days. Sensitivity analysis indicated
23	that domestic storage temperature and contamination level during slicing were the most
24	influential factors.
25	For fresh poultry fillets stored aerobically at retail, a QMSRA model based on the
26	growth and metabolic activity of Pseudomonas spp. was established. Microbiological
27	and sensory data were combined to define the relationship between bacterial
28	concentration and sensory rejection using a beta-Poisson model. A second-order Monte
29	Carlo simulation was used to separate uncertainty from variability. The model predicted
30	an increasing number of spoiled units after 6-10 days of storage, while a 1 log reduction
31	in contamination or a 1°C temperature decrease could reduce spoilage risk by up to 90-
32	99%.
33	In post-harvest raw shrimps, the fate of naturally-occurring Vibrio
34	parahaemolyticus was investigated using PMA-qPCR and fitted with the Baranyi
35	growth model. The bacteria showed slow inactivation at 4°C and 7°C but rapid,
36	temperature-dependent growth between 15°C and 30°C. Comparative analysis revealed
37	that predictive models based on artificially inoculated cooked shrimps may

1 and maximum bacterial concentrations in summer-harvested samples. 2 The integrated predictive microbiology and QMSRA models provide a robust 3 scientific foundation for food quality management, shelf-life determination, and microbial risk assessment in both retail and post-harvest food systems. 4 5 6 Reference 7 Tsaloumi, S., Stathas, L., & Koutsoumanis, K. (2023). Quantitative microbiological 8 spoilage risk assessment (QMSRA) of fresh poultry fillets during storage at 9 retail. Food Research International, 170, 113018. 10 11 Tsaloumi, S., Stathas, L., & Koutsoumanis, K. (2024). Development of a quantitative 12 microbiological spoilage risk assessment (QMSRA) model for cooked ham sliced at retail. Food Microbiology, 119, 104433. 13 Wu, Q., Liu, J., Malakar, P. K., Pan, Y., Zhao, Y., & Zhang, Z. (2024). Modeling 14 naturally-occurring Vibrio parahaemolyticus in post-harvest raw shrimps. Food 15 16 Microbiology, 118, 104420.