1	The undesirable flavor of yeast extracts
2	黄詩婷 (5112)
3	2021/10/13
4	Outline
5	1. Introduction
6	2. Yeasty odor compounds
7	• n-Octanal, Acetic acid, Butyric acid, Guaiacol, etc.
8	3. Bitter taste substances
9	Amino acids: Tyrosine, Lysine, Leucine
10	• Peptides
11	4. Changes after heat treatment of yeast extracts
12	5. Conclusion
13	
14	Abstract
15	Yeast extracts (YEs) has been widely used in the food seasoning due to their tastes and
16	rich aroma substances. However, bitter taste in YEs has influenced its acceptance. The
17	objective of the research was to study the key yeasty odor compounds of YEs and changes in
18	bitter taste substances during thermal treatment to provide useful informations for quality
19	control. YEs with different strains, enzymes, enzymatic hydrolysis processes and heat
20	treatment were analyzed by sensory analysis, gas chromatography-olfactometry-mass
21	spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). After that, the
22	treatment of LA00 at thermal treatments (25, 100, 110, 120, 130, 140 °C) were measured of
23	peptides and amino acids by reversed-phase high-performance liquid chromatography (RP-
24	HPLC) and taste dilution analysis (TDA). The results showed yeasty odor was combination
25	of burnt, sour, astringent, rancid, sweat, gasoline and fatty notes. The key compounds were
26	acetic acid, propionic acid, butyric acid, isovaleric acid, n-octanal, guaiacol, styrene and
27	sterol. Producing LA00 the strongest bitterness at 130 - 140 °C, and bad taste substances
28	were Arg-Leu, Phe-Thr, Phe-Gln, Pro-Leu, Tyr, Lys and Leu. Because YEs produced from
29	FX-2 strain and consist of cell wall developed strong off-flavor. Paste YEs, reducing heat and

enhancing enzymatic hydrolysis process were chosen to prevent yeasty odor for use in
seasoning. Heating of YEs developed undesirable bitter peptides and amino acids at 130 140 °C, and at 120 °C for 1 h is a suitable condition to develop good flavor.

33

1	Reference
2	Alim, A., Song, H., Liu, Y., Zou, T., Zhang, Y., Zhang, S. (2018). Flavour-active compounds
3	in thermally treated yeast extracts. Journal of the Science of Food and Agriculture. 98,
4	3774–3783.
5	Alim, A., Yang, C., Song, H., Liu, Y., Zou, T., Zhang, Y., Zhang, S. (2019). The behavior of
6	umami components in thermally treated yeast extract. Food Research International. 120,
7	534-543.
8	Alim, A., Song, H., Yang, C., Liu, Y. Zou, T., Zhang, Y., Zhang, S. (2019). Changes in
9	the perception of bitter constituents in thermally treated yeast extract. Journal of
10	the Science of Food and Agriculture. 99, 4651-4658.
11	Alim, A., Song, H., Zou, H. (2020). Analysis of meaty aroma and umami taste in thermally
12	treated yeast extract by means of sensory-guided screening. European Food Research
13	and Technology. 246, 2119–2133.
14	Festring, D., Hofmann, T. (2010). Discovery of N(2)-(1-carboxyethyl) guanosine 5'-
15	monophosphate as an umami-enhancing maillard-modified nucleotide in yeast extracts.
16	Journal of Agriculture and Food Chemistry. 58, 10614–10622.
17	Hillmann, H., Hofmann, T. (2016). Quantitation of key tastants and re-engineering the taste
18	of parmesan cheese. Journal of Agricultural and Food Chemistry. 64, 1794–1805.
19	Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H., Fukui, S. (1988). Role
20	of the hydrophobic amino acid residue in the bitterness of peptides. Agricultural and
21	Biological Chemistry. 52, 91–94.
22	Lin, M., Liu, X., Xu, Q., Song, H., Li, P., Yao, J. (2014). Aroma-active components of yeast
23	extract pastes with a basic and characteristic meaty flavour. Journal of the Science of
24	Food and Agriculture. 94, 882–889.
25	Raza, A., Song, H., Raza, J., Li, P., Li, K., Yao, J. (2020). Formation of beef-like odorants
26	from glutathione-enriched yeast extract via Maillard reaction. Food & function.11,
27	8583-8601.
28	Zhang, Y., Song, H., Li, P., Yao, J., Xiong, J. (2017). Determination of potential off-flavour
29	in yeast extract. LWT - Food Science and Technology. 82, 184–191.
30	Zheng, Y., Yang, P., Chen, E., Song, H., Li, P., Li, K., Xiong, J. (2020). Investigating
31	characteristics and possible origins of off-odor substances in various yeast extract
32	products. Journal of Food Biochemistry. 44(5), 13184.