1	Investigation of Anticancer and Antimicrobial Activities of
2	Red Onion Skin Extract
3	劉子瑄 (5116)
4	2025/11/12
5	Outline
6	1. Introduction
7	2. Spiraeoside extracted from red onion skin ameliorates apoptosis and exerts potent
8	antitumor, antioxidant and enzyme inhibitory effects
9	3. Evaluation of biological potential of red onion skin extract for anticancer and
10	antimicrobial activities
11	4. Conclusion
12	Abstract
13	This study focuses on two bioactive compounds from red onion skin. First,
14	spiraeoside (SPI), a major flavonoid from red onion skin, exhibits strong antioxidant,
15	anti-inflammatory, and enzyme inhibitory activities. Its bioactivity was comparable to
16	standard reference drugs. In HeLa cells, SPI showed dose- and time-dependent
17	cytotoxicity and effectively induced apoptosis. Overall, SPI demonstrated
18	multifunctional bioactivity and represented a promising natural compound with
19	potential anticancer applications. Second, dihydroxy benzoic acid (DHBA), presented
20	at high concentrations in chromatographic red onion skin extracts (CROS), showed
21	both anticancer and antimicrobial activities. In vitro, DHBA effectively inhibited
22	Gram-negative bacteria such as Escherichia coli, while in vivo studies in tumor-bearing
23	mice indicate that DHBA improved physiological parameters, and protected liver and
24	kidney function, in some cases outperforming cisplatin.
25	Together, SPI and DHBA highlight the multifunctional bioactivity of red onion skin,
26	demonstrating its potential as a natural source of compounds with anticancer,
27	antioxidant, enzyme-inhibitory, and antimicrobial properties. Red onion skin thus
28	represents a promising resource with many untapped potentials for further
29	investigation.

Process Biochemistry 139, 1–10.

8

2	Nile A., Nile S.H., Cespedes-Acuña C.L., Oh J-W., 2021. Spiraeoside extracted from
3	red onion skin ameliorates apoptosis and exerts potent antitumor, antioxidant and
4	enzyme inhibitory effects. Food and Chemical Toxicology 154, 112327.
5	El Sadda, R.R., El-Shobaky, A.R., El Sharawy, H.O., Moawed, E.A., Gohar, O.H., El-
6	Zahed, M., Elseady, Y.Y., El-tohamy, W.S., 2024. Evaluation of biological
7	potential of red onion skin extract for anticancer and antimicrobial activities.