1	The Optimization of Supercritical CO2 Extraction on Polyphenol
2	Extraction from Plant Materials by Response Surface Methodology.
3	陳昱睿(5143)
4	02/22/2023
5	Outline
6	1. Introduction
7	2. The Optimization of Polyphenol Extraction from Plant Materials using
8	Supercritical CO ₂ Extraction by Response Surface Methodology.
9	A. Response Surface Optimization of Supercritical Carbon Dioxide Extraction of
10	Tea Polyphenol from Green Tea Scraps.
11	B. Optimization of Supercritical Fluid Extraction of Polyphenols from Oats
12	(Avena sativa L.) and Their Antioxidant Activities.
13	C. Optimization of Polyphenol Extraction from Hippophae salifolia D. Don Leaf
14	Using Supercritical CO ₂ by Response Surface Methodology.
15	3. Conclusion
16	Abstract
17	Polyphenols exist in plants cell commonly and have several bioactivities such as
18	antioxidation, cytoprotectivity, antibacterial, antitumor, antiviral, anticancer, etc. Due
19	to its bioactivities, plants extracts are always considered good materials for dietary
20	supplements. Supercritical CO2 extraction is a novel extraction method that can
21	extract polyphenols from plants cell that are environmentally friendly, nontoxic, and
22	inflammable. However, supercritical CO2 extraction shows different properties by
23	changing its conditions, including pressure, temperature, flow rate, and co-solvents,
24	which influence its extraction efficiency. In order to obtain the best supercritical CO ₂
25	extraction conditions, the response surface methodology (RSM) could be an ideal
26	method to optimize extraction conditions by predicting the extract yields under several
27	conditions. In this study, three plants materials were studied to optimize supercritical
28	CO ₂ extraction with RSM: tea scrape, oats and sea buckthorn leaf. According to the
29	results, RSM could optimize the process of supercritical CO2 extraction by obtaining
30	the best conditions in various materials. Overall, RSM has the potential to optimize
31	supercritical CO ₂ extraction in the food industry.
	1

1 **References**

- 2 Escobedo-Flores, Y., Chavez-Flores, D., Salmeron, I., Molina-Guerrero, C., & Perez-3 Vega, S. (2018). Optimization of supercritical fluid extraction of polyphenols from oats (Avena sativa L.) and their antioxidant activities. Journal of Cereal 4 5 Science, 80, 198-204. Moges, A., Barik, C. R., Sahoo, L., & Goud, V. V. (2022). Optimization of polyphenol 6 7 extraction from Hippophae salicifolia D. Don leaf using supercritical CO₂ by response surface methodology. 3 Biotech, 12(11), 292. 8 9 Wang, W., Han, S., Zha, X., Cheng, J., Song, J., & Jiao, Z. (2019). Response Surface 10 Optimization of Supercritical Carbon Dioxide Extraction of Tea Polyphenols 11 from Green Tea Scraps. Journel of AOAC International, 102(2), 451-456.
- 12