1	The flavor compounds of yeast extract and
2	the change after heat treatment
3	黄詩婷 (5112)
4	2020/12/02
5	Outline
6	1. Introduction
7	2. Aroma compounds of yeast extracts
8	3. Changes in flavor precursors after heat treatment of yeast extract
9	• Non-volatile substances
10	• Aroma active compounds
11	4. Conclusion
12	
13	Abstract
14	Yeast extracts (YEs) has been widely used in the food seasoning due to their tastes
15	and rich aroma substances. The objective of the research was to study the key aroma-
16	active compounds of YEs and changes in flavor precursors during thermal treatment to
17	provide useful informations for quality control. Four YEs (LA00L, LA00, FA31, and
18	KA02) with different yeasty intensities were analyzed by sensory analysis, gas
19	chromatography-olfactometry (GC-O) and PLSR analysis. After that, the treatment of
20	LA00 at thermal treatments (25, 100, 110, 120, 130, 140 °C) were measured of flavor
21	precursors and aroma-active compounds. The results showed LA00L had the highest
22	scores in sulfurous flavors. FA31 had a floral aroma, which was related to the high
23	content of aromatic compounds. LA00 had octanal and nonanal with grassy and fatty
24	flavors. High acid compounds associated with fermented flavor in LA00 and KA02.
25	Indoles with strong off-odor that provide animal flavor in YEs. There was a positive
26	correlation between umami, salty, kokumi and sweet flavor ($p < 0.05$), and a negative
27	correlation with sour and bitter in LA00. Producing the strongest meaty and green
28	odors at 100 - 110 °C, roast and buttery at 120 °C, and strong sour taste and odor at 130
29	- 140 °C. Precursors contents decreased significantly as increasing temperature, while
30	aroma-active compounds contents increased. Because KA02 developed strong off-
31	flavor, LA00L and LA00 were chosen to prevent bad odor for use in seasoning.
32	Heating of YEs developed undesirable sulfur and sour odor at 130 - 140 °C, and at 120
33	°C for 1 h is a suitable condition to develop good flavor.

1	Reference
2	Ames, J.M. (1994). Volatile sulfur compounds in yeast extracts. ACS Symposium Series.
3	564, 147–159.
4	Alim, A., Song, H., Liu, Y., Zou, T., Zhang, Y., Zhang, S. (2018). Flavour-active
5	compounds in thermally treated yeast extracts. Journal of the Science of Food
6	and Agriculture. 98, 3774–3783.
7	Engel, W., Bahr, W., Schieberle, P. (1999). Solvent assisted flavor evaporation - a new
8	and versatile technique for the careful and direct isolation of aroma compounds
9	from complex food matrices. European Food Research and Technology. 209,
10	237–241.
11	Grosch, W. Detection of potent odorants in foods by aroma extract dilution analysis.
12	(1993). Trends in Food Science and Technology. 4, 68–73.
13	Lin, M., Liu, X., Xu, Q., Song, H., Li, P., Yao, J. (2014). Aroma-active components of
14	yeast extract pastes with a basic and characteristic meaty flavour. Journal of the
15	Science of Food and Agriculture. 94, 882–889.
16	Mahadevan, K., Farmer, L. (2006). Key odor impact compounds in threeyeast extract
17	pastes. Journal of Agricultural and Food Chemistry. 54, 7242-7250.
18	Scalone, G. L. L., Cucu, T., De Kimpe, N., De Meulenaer, B. (2015). Influence of free
19	amino acids, oligopeptides, and polypeptides on theformation of pyrazines in
20	Maillard model systems. Journal of Agricultural and Food Chemistry. 63,
21	5364-5372.
22	Van Den Dool, H., Kratz, P.D. (1963). A Generalization of the retention index system
23	including linear temperature programmed gasliquid partition chromatography.
24	Journal of Chromatography A. 11, 463–471.
25	Wang, Z., Xiao, Q., Zhuang, J., Feng, T., Chi-Tang Ho, C.T., Song, S. (2020).
26	Characterization of aroma-active compounds in four yeast extracts using
27	instrumental and sensory techniques. Journal of Agricultural and Food
28	Chemistry. 68, 267–278.
29	Zhang, Y., Song, H., Li, P., Yao, J., Xiong, J. (2017). Determination of potential off-
30	flavour in yeast extract. Food Science and Technology. 82, 184-191.