1	Effects of High Hydrostatic Pressure Treatment on Microbial Flora and Sensory
2	Characteristics in Coffee Cherry
3	鄭宇君 (5143)
4	2024/05/01
5	Outline
6	1 · Introduction
7	2 • Materials and methods
8	3 NResult
9	4 • Conclusion
10	Abstract
11	To alter or enhance flavors, it is common to add strains for fermentation or use emerging
12	pretreatment methods to change fermentation flavors. The aim of this study is to use
13	high hydrostatic pressure processing (HPP) to change the coffee structure and alter the
14	action of microorganisms, thereby shortening the drying time and change the microbial
15	flora of coffee, resulting in a change in flavor. During fermentation periods, the
16	moisture content of the Control (CON), 100 MPa, and 200 MPa groups showed a
17	decreasing trend. Structural damages caused by HPP, were confirm with scanning
18	electron microscopy, result in increased drying rate from day 0 to day 4 compared to
19	the CON. HPP reduced the number of mesophilic and lactic acid bacteria, with slight
20	changes to the microbial flora of coffee cherry. 16S rRNA sequencing identified two
21	major categories of microorganisms: the family Leuconostocaeae and the
22	Enterobacteriaceae. Leuconostoc showed the highest relative abundance at both the
23	beginning and end of fermentation in all three groups, making it as the most common
24	genus during the coffee fermentation. ITS sequencing identified only yeast species
25	Hanseniaspora commonly found in coffee cherry. Sensory evaluations of the three
26	groups revealed unique characteristics: the CON displayed caramelized flavors. After
27	the 100 MPa treatment, a tropical fruit profile emerged. Following the 200 MPa
28	treatment, floral notes were observed, although the specific types of floral aromas could
29	not be precisely identified. In the electronic tongue analysis, the 100 MPa treatment had
30	a higher astringency, the 200 MPa treatment had a more pronounced bitterness, and
31	body was also higher than the other two groups. Overall, the populations of mesophilic
32	and lactic acid bacteria decreased due to high pressure. The microbial flora consisted
33	of Leuconostocaeae, Enterobacteriaceae, and Hanseniaspora. In sensory evaluations,
34	the CON showed a caramel flavor, whereas treatment at 100 MPa resulted in a peppery
35	taste, and treatment at 200 MPa produced a floral aroma. Electronic tongue analysis
36	indicated higher astringency at 100 MPa and increased bitterness at 200 MPa. To clearly
37	the changes in microbial flora and flavor will require further illustration through
38	subsequent analyses using HPLC and GC-MS.