1		Flavor Characterization of Coffee Brewed by Various
2		Dripper
3 4 5		Yu Hsuan Kuo (5111) 05/19/2021
5 6	A.	<u>Outline</u> Introduction
0 7	А.	
7 8		a. Coffee Consumptionb. Coffee Processing
9		c. Coffee Flavor and Aroma Compounds
10	B.	Coffee Sample Preparation
10	D. C.	Trigonelline, Chlorogenic Acids and Caffeine Contents in Drip Brewed Coffee
12	D.	Aroma Characterization of Drip Brewed Coffee
13	D. E.	Conclusion
14	L	Abstract
15		Coffee aroma is one of the most crucial attribute of consumer preference. As pour
16	ove	r coffee gets popular, more people are fascinated to brew coffee by themselves.
17		s, suppliers sell numerous coffee drippers claimed with various functions such as
18		inced, sweeter, and abundant flavor. There were lots of studies concerned chemical
19		positions in coffee beans and beverages, but only few focused on coffee extraction
20		s or accessories in the perspective of brewed coffee flavor. The purpose of the study
21		to characterize coffee flavor brewed by various coffee dripper based on non-
22		tile and volatile compounds in the beverage. The results showed that the extraction
23		e of V60 and flannel coffee was shorter, but Kalita coffee was longer and featured
24	avei	rage flow rate. The extraction yields of Kalita brewed coffee reach the standard
25	esta	blished by Specialty Coffee Association of America. In chemical compositions,
26	non	-volatile compounds such as trigonelline, chlorogenic acids and caffeine were the
27	mos	t representative compounds. Kalita coffee obtained the highest amount of
28	chlo	progenic acids than other drippers. For volatile compounds, 2-furanmethanol acetate,
29	1H-	indol-5-ol and mequinol showed statistically significant differences among samples.
30	The	volatile profile of aroma compounds in V60, Kalita, metal filter and flannel coffee
31	wer	e similar. However, orthogonal partial least squares-discriminant analysis was able
32	to s	eparate each data set into individual cluster. Therefore, coffee flavor extracted by
33	vari	ous types of coffee dripper can be distinguished by its chemical compositions.

1	References
2	財政部統計處 (2019): 財政統計通報 (第 22 號)。2020 年 7 月 4 日, 取自
3	<u>http://service.mof.gov.tw/public/Data/statistic/bulletin/108/</u> 第 22 號-咖啡豆進
4	□.pdf
5	經濟部統計處 (2019):產業經濟統計簡訊 《337》。2020年7月4日,取自
6	https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&m
7	enu id=18808• id=6099
8	Angeloni, G., Guerrini, L., Mosella, P., Bellumori, M., Daluiso, S., Parenti, A., &
9	Innocenti, M. (2019). What kind of coffee do you drink? An investigation on
10	effects of eight different extraction methods. Food Research International,
11	116, 1327-1335. doi:10.1016/j.foodres.2018.10.022
12	Arai, K., Terashima, H., Aizawa, Si., Taga, A., Yamamoto, A., Tsutsumiuchi, K., &
13	Kodama, S. (2015). Simultaneous determination of trigonelline, caffeine,
14	chlorogenic acid and their related compounds in instant coffee samples by
15	HPLC using an acidic mobile phase containing octanesulfonate. Analytical
16	<i>Sciences</i> , <i>31</i> (8), 831-835.
17	Bae, JH., Park, JH., Im, SS., & Song, DK. (2014). Coffee and health. Integrative
18	medicine research, $3(4)$, 189-191.
19	Bravo, J., Monente, C., Juániz, I., De Peña, M. P., & Cid, C. (2013). Influence of
20	extraction process on antioxidant capacity of spent coffee. Food Research
21	International, 50(2), 610-616.
22	doi: <u>https://doi.org/10.1016/j.foodres.2011.04.026</u>
23	Cordoba, N., Fernandez-Alduenda, M., Moreno, F. L., & Ruiz, Y. (2020). Coffee
24	extraction: A review of parameters and their influence on the physicochemical
25	characteristics and flavour of coffee brews. Trends in Food Science &
26	<i>Technology</i> , 96, 45-60. doi:10.1016/j.tifs.2019.12.004
27	DaMatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature
28	stress on coffee physiology and production: a review. <i>Brazilian journal of</i>
29	plant physiology, 18(1), 55-81.
30	Farah, A., de Paulis, T., Trugo, L. C., & Martin, P. R. (2005). Effect of roasting on the
31	formation of chlorogenic acid lactones in coffee. <i>Journal of Agricultural and</i>
32	Food Chemistry, 53(5), 1505-1513.
33 34	Farah, A., & Duarte, G. (2015). Bioavailability and metabolism of chlorogenic acids from coffee. In <i>Coffee in Health and Disease Prevention</i> (pp. 789-801):
35 35	Elsevier.
36	Ferrão, L. F. V., Caixeta, E. T., Pena, G., Zambolim, E. M., Cruz, C. D., Zambolim,
30 37	L., Sakiyama, N. S. (2015). New EST–SSR markers of Coffea arabica:
38	transferability and application to studies of molecular characterization and
39	genetic mapping. <i>Molecular Breeding</i> , 35(1), 31.
40	Frost, S. C., Ristenpart, W. D., & Guinard, J. X. (2019). Effect of Basket Geometry
41	on the Sensory Quality and Consumer Acceptance of Drip Brewed Coffee.
42	Journal of Food Science, 84(8), 2297-2312. doi:10.1111/1750-3841.14696
43	Khamitova, G., Angeloni, S., Fioretti, L., Ricciutelli, M., Sagratini, G., Torregiani,
44	E., Caprioli, G. (2020). The impact of different filter baskets, heights of
45	perforated disc and amount of ground coffee on the extraction of organics
46	acids and the main bioactive compounds in espresso coffee. Food Research
47	International, 133. doi:10.1016/j.foodres.2020.109220
48	Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2015). Coffee
49	fermentation and flavor - An intricate and delicate relationship. Food
50	Chemistry, 185, 182-191. doi:10.1016/j.foodchem.2015.03.124

1	Ortiz, A. L. G., Berti, F., Sanchez, W. S., Navarini, L., Colomban, S., Crisafulli, P., &
2	Forzato, C. (2019). Distribution of p-coumaroylquinic acids in commercial
3	Coffea spp. of different geographical origin and in other wild coffee species.
4	Food Chemistry, 286, 459-466. doi:10.1016/j.foodchem.2019.02.039
5	Poltronieri, P., & Rossi, F. (2016). Challenges in specialty coffee processing and
6	quality assurance. <i>Challenges</i> , 7(2), 19.
7	Saw, A. K. C., Yam, W. S., Wong, K. C., & Lai, C. S. (2015). A Comparative Study
8	of the Volatile Constituents of Southeast Asian Coffea arabica, Coffea liberica
9	and Coffea robusta Green Beans and their Antioxidant Activities. Journal of
10	Essential Oil Bearing Plants, 18(1), 64-73.
11	doi:10.1080/0972060x.2014.977580
12	Toledo, P., Pezza, L., Pezza, H. R., & Toci, A. T. (2016). Relationship Between the
13	Different Aspects Related to Coffee Quality and Their Volatile Compounds.
14	Comprehensive Reviews in Food Science and Food Safety, 15(4), 705-719.
15	doi:10.1111/1541-4337.12205
16	Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS).
17	Journal of Chemometrics: A Journal of the Chemometrics Society, 16(3), 119-
18	128.
19	Uman, E., Colonna-Dashwood, M., Colonna-Dashwood, L., Perger, M., Klatt, C.,
20	Leighton, S., Hendon, C. H. (2016). The effect of bean origin and
21	temperature on grinding roasted coffee. Scientific Reports, 6.
22	doi:10.1038/srep24483
23	Yeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). Coffee Volatile and
24	Aroma Compounds–From the Green Bean to the Cup. In Coffee (pp. 726-770)