1	Effect on Periodontitis through Modulating Macrophages: Ameliorate	
2	Alveolar Bone Loss and Improve Anti-Inflammatory Activity	
3		Chi-Shung Tseng (5123)
4		2021/10/13
5		Outline
6	I.	Introduction
7	II.	Human β -defensin 3 inhibits periodontitis development by suppressing inflammatory
8		responses in macrophages.
9	III.	Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on
10		Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and
11		in vivo in a rat model of periodontitis.
12	IV.	Conclusion
13		Abstract
14	Periodontitis is an infectious disease caused by Porphyromonas gingivalis. It will extend	
15	deep into periodontal tissues and cause the destruction of connective tissue and the loss of	
16	alveolar bone. Macrophages, as the innate immune system, play an important role in the	
17	pathogenesis of periodontitis. It can be polarized into two phenotypes depending on different	
18	microenvironment stimuli: the classical inflammatory M1 type and anti-inflammatory M2 type.	
19	Human β -defensins 3 (hBD3s) are cationic peptides with immunomodulatory effects. In vitro,	
20	hBD3 significantly suppressed TNF- α and IL-6 secretion in RAW 264.7 cells stimulated by the	
21	LPS of Porphyromonas gingivalis (P.g). Furthermore, hBD3 attenuated the polarization of	
22	RAW 264.7 cells into the M1 phenotype, with reduced translocation of nuclear factor- κB (NF-	
23	κ B). In the mouse periodontitis model, hBD3 inhibited the levels of TNF- α , IL-6, and matrix	
24	metalloprotease-9 (MMP-9) in gingival tissues. The interleukin-1 receptor antagonist (IL-1ra)	
25	is a glycoprotein that binds to the IL-1 receptor on the cell surface to competitively inhibit the	
26	biological activity of IL-1 α and IL-1 β to modulate inflammatory. Using S/O/W method to	
27	prepare dextran/PLGA microspheres loaded IL-1ra to control drug release and prevent	
28	degradation immediately. The average particle size of IL-1ra microspheres was 12.76 ± 4.89	
29	µm. Then, the data showed that IL-1ra microspheres decreased pro-inflammatory cytokines	
30	both in LPS stimulated RAW264.7 cells and periodontitis rats. Moreover, after IL-ra	
31	microspheres treatment significantly alleviates alveolar bone loss. In summary, targeting to	
32	switch macrophages to anti-inflammatory phenotype has potential to be a new strategy to treat	
33	periodontitis.	

- Cui, D., Lyu, J., Li, H., Lei, L., Bian, T., Li, L., & Yan, F. (2017). Human beta-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. *Mol Immunol*, 91, 65-74.
- Ren, B., Lu, J., Li, M., Zou, X., Liu, Y., Wang, C., & Wang, L. (2021). Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and in vivo in a rat model of periodontitis. *Biomed Pharmacother*, 134, 111171.