1	The effects of different drying methods on bioactive substances in
2	berries
3	王彦婷(5152)
4	03/20/2024
5	Outline
6	1. Introduction
7	2. Influence of different drying methods on the quality of Japanese quince fruit
8	3. Influence of the drying methods on color, vitamin C, anthocyanin, phenolic
9	compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits
10	4. Conclusion
11	Abstract
12	Fruits are rich in carbohydrates, vitamins, minerals, phenolic compounds and other
13	nutrients. However, due to the relatively high-water content of fresh fruits, it is easy to
14	rot due to the proliferation of microorganisms, which poses a great challenge for
15	transportation and storage. Drying can removes moisture from the biological products
16	to prevent spoilage and increase shelf life. According to Turkiewicz et al. (2019) and
17	Zia & Alibas (2021), there are some different drying methods, including convective
18	drying (CD), vacuum-microwave drying (VMD), a pre-treatment by convective drying
19	and finished by vacuum-microwave drying (CVMD), freeze drying (FD), Natural
20	drying (ND), Microwave drying (MVD), and the combined microwave-convective
21	drying (MWCD). From the color, the results show that the increase in temperature in
22	convective drying and power in vacuum-microwave drying resulted in a decrease in
23	coordinate b*. Freeze-drying caused the smallest color changes. Also, freeze-drying
24	contributed to the preservation of L-ascorbic acid at an equally high level (7306 mg/kg
25	dw) as vacuum-microwave drying. Summarizing all drying methods, freeze-drying still
26	ensures the highest content of total phenols. In blueberries, the results showed the total
27	anthocyanin at 300 W shows the highest values. Regarding ascorbic acid values, drying
28	at 500 W has a higher value than other dosages. Furthermore, 300 W has the best results
29	for TPC. To conclude, freeze-drying ensures that the highest quality product is obtained,
30	but consider to it cost. The best drying method can be in terms of color parameters,
31	antioxidant capacity, anthocyanin content, and ascorbic acid content was the microwave
32	drying method at 300 W. To save the most of nutrients, consider the microwave drying
33	or the combined microwave-convective drying, and a pre-treatment by convective
34	drying and finished by vacuum-microwave drying could be better than the convective
35	drying.