1	Recombinant Aspergillus japonicus cysteine-S-conjugate β-lyase to releases
2	thiol aroma compounds
3	張伸維 (5121
4	2023/5/2
5	Outline
6	1. Introduction
7	2. Strain selection, activation, preservation and DNA extraction
8	3. Construct recombinant expression carrier
9	4. Protein expression, purification and analysis
10	5. Conclusion
11	Abstract
12	Volatile thiols 3-mercaptohexan-1-ol (3MH), 3-mercaptohexyl acetate (3MHA), 4
13	mercapto-4-methyl-pentan-2-one (4MMP) are powerful aromatic compounds, fungi rely on it
14	metabolic versatility plays an important role in the food industry process, so the purpose of thi
15	study is to screen out the cysteine-S-conjugated β -lyase genes related to the release of volatil
16	thiols from mold species, through recombinant protein technology allows it to be expressed in
17	large quantities to generate the target protein, and explores the ability of this protein to produc
18	sulfur-containing aroma compounds. Cysteine-S-conjugated β -lyase mainly exists in the form
19	of tetramer, which is an enzyme containing pyridoxal 5'-phosphate, PLP cofactor, it can
20	catalyze β -elimination reaction of cysteine-S-conjugated electron-withdrawing groups of
21	sulfur, the final products are pyruvate, ammonium and sulfur-containing compounds, which
22	contribute greatly to the aroma, in view of their high concentration and low threshold in food
23	but in the process of natural fermentation, the conversion rate of enzymes to convert odorles
24	precursors into aroma compounds is very low, so it needs to be improved by transformation
25	through Prokaryotes produce a large number of target enzymes to elevate convertion efficiency
26	After using the protein database Uniprot and BLAST protein alignment tools for comparison
27	Aspergillus japonicus was selected as the gene source of this enzyme. After DNA molecula
28	extraction and PCR amplification, which express in the E. coli C43 system, induce and purify
29	the protein by using ÄKTA fast protein liquid chromatography, FPLC. Based on the above
30	results, through subsequent quantitative, qualitative and enzyme activity analysis tests, th
31	protein identity of the recombinant enzyme can be identified and compared, also can test it
32	ability to produce sulfur compounds. Expecting to apply this technology in the spice market
33	providing a new option for the production of spices.

- Bassi, D., Puglisi, E., & Cocconcelli, P. S. (2015). Comparing natural and selected starter
 cultures in meat and cheese fermentations. *Current Opinion in Food Science*, 2, 118 122
- 4 Campbell-Platt, G. (2014). FERMENTED FOODS | Origins and Applications.
- Copetti, M. V. (2019). Yeasts and molds in fermented food production: an ancient bioprocess.
 Current Opinion in Food Science, 25, 57-61
- Holt, S., Cordente, A. G., Williams, S. J., Capone, D. L., Jitjaroen, W., Menz, I. R., Curtin, C.,
 & Anderson, P. A. (2011). Engineering Saccharomyces cerevisiae To Release 3Mercaptohexan-1-ol during Fermentation through Overexpression of an S. cerevisiae
 Gene, STR3, for Improvement of Wine Aroma. *Applied and Environmental Microbiology*, 77(11), 3626-3632
- Li, H. K., Chang, C. F., Lin, H. J., Lin, J. L., Lee, Y. T., Wu, Y. H., Liu, C. Y., Lin, T. C., Hsu,
 P. H., & Lin, H. T. V. (2021). Conversion of a Thiol Precursor into Aroma Compound
 4-mercapto-4-methyl-2-pentanone Using Microbial Cell Extracts. *Fermentation-Basel*,
 7(3), 129
- Roland, A., Cavelier, F., & Schneider, R. (2012). How organic and analytical chemistry
 contribute to knowledge of the biogenesis of varietal thiols in wine. A review. *Flavour and Fragrance Journal*, 27(4), 266-272
- Roland, A., Schneider, R., Razungles, A., & Cavelier, F. (2011). Varietal Thiols in Wine:
 Discovery, Analysis and Applications. *Chemical Reviews*, 111(11), 7355-7376
- Roncoroni, M., Santiago, M., Hooks, D. O., Moroney, S., Harsch, M. J., Lee, S. A., Richards,
 K. D., Nicolau, L., & Gardner, R. C. (2011). The yeast *IRC7* gene encodes a beta-lyase
 responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in
 wine. *Food Microbiology*, 28(5), 926-935
- Santiago, M., & Gardner, R. C. (2015). Yeast genes required for conversion of grape precursors
 to varietal thiols in wine. *FEMS Yeast Research*, 15(5)
- Sasikumar, B., Swetha, V., Parvathy, V., & Sheeja, T. (2016). Advances in adulteration and
 authenticity testing of herbs and spices. In *Advances in food authenticity testing* (pp.
 585-624): Elsevier.
- Thibon, C., Bocker, C., Shinkaruk, S., Moine, V., Darriet, P., & Dubourdieu, D. (2016).
 Identification of S-3-(hexanal)-glutathione and its bisulfite adduct in grape juice from
 Vitis vinifera L. cv. *Sauvignon blanc* as new potential precursors of 3SH. *Food Chemistry*, 199, 711-719
- Tominaga, T., Furrer, A., Henry, R., & Dubourdieu, D. (1998). Identification of new volatile
 thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. *Flavour and Fragrance Journal, 13*(3), 159-162