1	Probiotic Bacillus subtilis alleviates DSS-Induced colitis in mice through
2	modulation of inflammation and metabolic pathways
3	李芳頡(5116)
4	2025/11/05
5	Outline
6	1. Introduction
7	2. Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in
8	Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation,
9	and Gut Microbiota Modulation
10	3. Probiotic Bacillus cereus regulates metabolic disorders and activates the cholic
11	acid-FXR axis to alleviate DSS-induced colitis
12	4. Conclusion
13	Abstract
14	Ulcerative colitis is associated with impaired intestinal barrier integrity, immune
15	dysregulation, and metabolic disturbances, highlighting the need for safer and more
16	effective therapeutic strategies. Bacillus cereus has been proposed as a probiotic
17	candidate due to its stability and regulatory effects on gut homeostasis. Therefore, this
18	research aimed to evaluate its protective role in dextran sulfate sodium (DSS)-induced
19	colitis. In murine models, B. cereus was orally administered during DSS exposure,
20	and disease severity was assessed through body weight changes, disease activity
21	index, colon morphology, histopathological evaluation, cytokine profiling, and
22	molecular analysis of epithelial barrier and inflammatory signaling pathways. The
23	results demonstrated that B. cereus alleviated colitis symptoms, preserved goblet cell
24	abundance, and restored tight junction proteins (ZO-1, Occludin, Claudin-1), thereby

- 1 protecting epithelial barrier integrity. Moreover, B. cereus suppressed pro-
- 2 inflammatory cytokines and inhibited TLR4–NF-κB–NLRP3 inflammasome
- 3 activation, while promoting macrophage polarization toward the M2 phenotype.
- 4 Metabolomic analysis further revealed activation of the bile acid–FXR axis and
- 5 modulation of metabolic pathways, contributing to inflammation resolution.
- 6 Collectively, B. cereus exerts multi-level protective effects through epithelial barrier
- 7 restoration, immune regulation, and metabolic reprogramming, supporting its
- 8 potential application as a therapeutic or functional probiotic for colitis management.
- 9 Reference
- 10 Sheng, Z., Jiang, S., Zhang, Y., Deng, X., Wei, C., & Wang, H. (2021).
- Probiotic *Bacillus cereus* alleviates dextran sulfate sodium-induced colitis in
- mice through improvement of the intestinal barrier function, anti-inflammation,
- and gut microbiota modulation. Journal of Agricultural and Food Chemistry,
- 14 69(35), 10420–10434.
- 15 Liao, Y., Wu, S., Zhou, G., Mei, S., Ou, B., Wen, M., Yang, Y., & Wen, G. (2025).
- Probiotic *Bacillus cereus* regulates metabolic disorders and activates the cholic
- 17 acid–FXR axis to alleviate DSS-induced colitis. *Journal of Proteomics*, 312,
- 18 105360.