1	Discussion on the Effects of Plasma-Activated Water on the		
2	Disinfection and Storage Quality of Meat		
3			李承諺 (5124)
4			2024/10/23
5			Outline
6	I.	Intr	oduction
7		A.	Plasma-activated water
8		B.	Food spoilage bacteria
9	II.	Dis	cussion on the Effects of Plasma-Activated Water on the Disinfection and
10		Sto	rage Quality of Meat
11		А.	Plasma-activated water for disinfection and quality retention of sea bream
12			fillets (Sparus aurata) : Kinetic evaluation and process optimization
13		В.	Effect of plasma activated water on the nutritional composition, storage quality
14			and microbial safety of beef
15	III.	Cor	nclusion
16	Abstract		
17	In recent years, nonthermal processing techniques have shown significant microbial		
18	inactivation effects while maintaining product quality. Plasma-activated water (PAW) has		
19	been proven to be an effective and eco-friendly disinfectant. The reactive oxygen and		
20	nitrogen species (RONS) it generates, combined with its low pH, can inactivate food		
21	spoilage microorganisms .This study initially investigated the microbial changes and		
22	physicochemical properties of sea bream fillets treated with PAW. At a solid-liquid ratio		
23	of 1:5 and an immersion time of 20 minutes, the microbial groups, including total aerobic		
24	bacteria (TAB), yeast/molds, H ₂ S-producing microorganism, lactic acid bacteria (LAB),		
25	Pseudomonas spp., Brochothrix thermosphacta, and Enterobacteriaceae were reduced		
26	by 1.58, 3.95, 1.96, 2.25, 1.48, and 2.14 log CFU/g, respectively. In storage tests, the		
27	PAW-treated group demonstrated reduced microbial growth rates and lower total volatile		
28	basic nitrogen (TVBN) values, while preserving good color and hardness. The shelf life		
29	was extended by 60%, yielding superior results compared to treatments with deionized		
30	water and artificially prepared solutions. Next, we investigated the microbial changes		
31	and physicochemical properties of beef treated with PAW. There was no significant		
32	reduction in nutrients in the PAW-treated group. The PAW treatment enhanced the		
33	tenderness of the beef and reduced the degree of lipid oxidation. Effective inactivation		
34	was achieved with a 5.9 log reduction in the population of Salmonella Typhimurium and		
35	a 4 log reduction in the population of <i>E. coli</i> after exposure to PAW for up to 240 seconds		
36	and 300 seconds, respectively. In summary, the experiments described above demonstrate		
37	that PAW has a significant ability to inactivate pathogenic bacteria while preserving the		
38	quality and color of meat products, making it highly promising for food applications.		