1	Microalgae on Immunomodulatory Effects Against
2	Influenza A Virus
3	李昱谊(5136)
4	2023/03/15
5	Outline
6	1. Introduction
7	2. Therapeutic Effects of a Dry Powder Prepared from the Green Microalga
8	Coccomyxa sp. KJ in Mice Infected with Influenza A Virus
9	3. The Entry Blocker Peptide Produced in <i>Chlamydomonas reinhardtii</i> Inhibits
10	Influenza Viral Replication in vitro
11	4. Conclusion
12	Abstract
13	Influenza is a viral infectious disease often causes fever, dyspnea and lung
14	damage during the infection process, while some studies have found that microalgae
15	are beneficial to these symptoms.
16	Gavage of Coccomyxa sp. KJ dry algal powder to mice were found
17	significantly reduce ten percent weight loss. Viral proliferation in the lungs and
18	bronchoalveolar lavage fluid were also reduced. Coccomyxa sp. KJ dry algal powder
19	exhibited stimulatory effects on systemic and local production of neutralizing
20	antibodies. Monogalactosyldiacylglycerol is thought to be one of the active
21	components in this algal powder. Entry Blocker Peptide can inhibit virus binding to
22	cells and reduce the ability of virus replication. Chlamydomonas reinhardtii is an
23	effective platform for recombinant protein production. Entry Blocker Peptide
24	produced by Chlamydomonas reinhardti can inhibit virus more effectively than
25	synthesized Entry Blocker Peptide.
26	Microalgae can stimulate the production of neutralizing antibodies to reduce
27	the damage caused by influenza A virus, and also has proven to be a good
28	biopharmaceutical expression platform. Therefore, microalgae can be used as a
29	complimentary therapy for treatment.

1	References
2	Hayashi, K., Kuno, H., Komatsu, S., Lee, J. B., & Kawahara, T. (2022). Therapeutic
3	Effects of a Dry Powder Prepared from the Green Microalga Coccomyxa sp. KJ
4	in Mice Infected with Influenza A Virus. Applied Microbiology, 2(3), 481-491.
5	Reyes-Barrera, K. L., Soria-Guerra, R. E., López-Martínez, R., Huerta, L., Salinas-
6	Jazmín, N., Cabello-Gutiérrez, C., & Alpuche-Solís, Á. G. (2021). The entry
7	blocker peptide produced in Chlamydomonas reinhardtii inhibits influenza viral
8	replication in vitro. Frontiers in Plant Science, 12, 641420.
9	